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I. ABSTRACT

This study is concerned with the analytical solutions of natural
convection flows in closed-end cylindrical vessels to obtain exact solu-
tions of temperature and velocity distribution in the laminar flow region
under steady state condition.

The temperature and velocity distributions, in general power
series of displacements, are substituted into the three basic equations
of continuity, momentum and energy. The relationships between co-
efficients of all powers are obtained through initial and boundary condi-
tions and recurrence formulae.

For constant wall temperature conditions the general solution
of temperature and velocity may be expressed as a function of displace-
ment, geometry ratio and Rayleigh number. Prandtl number does not
enter as an independent parameter.
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I1. INTRODUCTION

Natural convection flows in closed-end cylindrical vessels or
tubes has been of considerable interest in many practical applications
such as the stratification problem of a partially filled liquid propellant
cylindrical tank and cooling problem of turbine blades. Theoretical
studies are usually based on three fundamental equations; namely con-
tinuity, momentum, and energy equations. Theoretically speaking,
with initial and boundary conditions one should be able to solve for the
temperature and velocity distributions from these equations. Unfortun-
ately, no close-form transient solutions are available up to this date
except some numerical solutions by finite difference method.® Steady
state approximate solutions have been obtained by many investigator g23 4
mostly through integrated equations of the continuity, momentum, and
energy rather than solving from the differential equations. In this
report, the steady state solutions are obtained directly from the differ-
ential equations in the form of more exact power series solutions. An
interesting result from this report which differs from that reported in
the references (2, 3), is that the Prandtl number does not enter as an
independent variable but rather, is included in the Rayleigh number.
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II1. BASIC EQUATIONS AND BOUNDARY CONDITIONS

Geometrical Configuration: Consider the configuration under
study for a cylindrical vessel partially filled with liquid as shown in
Figure 1. The side wall temperature is kept as a constant, Tw, the
bottom of the vessel is insulated, the cold liquid at a temperature, Ty,
is fed through the center of the bottom. The level of the liquid inside
the vessel is maintained at a constant level. This means that the
amount of incoming liquid is completely vaporized on the top surface.
Other cases will simply change the boundary conditions.

z

Free Liquid | U
Level \
/ L»V

Liquid

T,

7 /////////////% ;///////////////7 > R

Ha———-—»

Insulated

Figure 1. Cylindrical Vessel Partially Filled with Liquid

Differential Equations: Three differential equations of contin-
uity, momentum, and energy may be written respectively for any
cylindrical differential liquid element as a result of the steady axisym-

metrical flow in the following:

9 0
aR( )+ 0 Z (RU)
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oU U 1 9 8U\ | 2%U
U=+ V= =p{(T - Tw) +v|Z = (R
oz T Vor - PI W) V[R 8R< 8R)+ azz] (2)
3T 3T 1 93 8T 3°T
Yozt Vor QI:R BR( BR) azz] (3)
where
U, V- Velocity components of the liquid in the direction of Z
and R axis.
B - The coefficient of the volumetric expansion.
f - The axial body force per unit mass or the gravitational
field.
v - The kinematic viscosity of the liquid.
a - The thermal diffusivity of the liquid.
T - The temperature of the liquid.
Tw - The wall surface temperature.

Boundary Conditions: Since the velocities on the wall surface
are zero and the thermal boundary conditions are specified, the
boundary conditions are as follows:

U(zZ, a)
T(Z, a)
where

? -

a -

Norma

= U(0,R) = U(L, R) = V(Z,a) = V(0O,R) = 0 (4)
3T 8T
=Tw 5212207 % Bz lz=47""° (3)

The liquid level in the vessel.

The inside radius of the vessel.

lized Differential Equations: Let velocity components,

the temperature of the liquid and the coordinates of the system be

normalized ac
2
a

u="

af

cording to the following dimensionless quantities:

fat Z R
U ve2v, t =22 (Tw.T), 222, r= = (6)
a afv £ a
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The normalized differential equations may be obtained by the
substitution of equation (6) into equations (1) through (3) as follows:

1 9 Ju

r Or (rv) + 9z 0 (7)
L[ 8w, Bul 113 93)@2_ 9%u (8)
P. v oz v ar | ~ r Or t or 2% 9zt

v or v oz r Or r or 2% 8z°

where Pr is the Prandt]l number.

Normalized Boundary Conditions: The boundary conditions, as
given by equations (4) and (5) may be normalized similarly into:

u(z, 1) = u(0, r) = u(l, r) = v(z, 1) = v(0,r) = 0 (10)
5] a
t(z, 1) = 0, £(0,0) = R %g—tz- z:o:a_; =0 (11)

fa®> (Tw - T
WhereRa:Ba (Tw 1)

, is the Rayleigh number.
va
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Iv. POWER SERIES SOLUTIONS

Power series solutions of the velocity components and the tem-
perature may be assumed as a function of z and r with arbitrary
coefficients. All arbitrary coefficients may be evaluated by recurrence

formulae resulting from satisfying differential equations and boundary
conditions.

Let

[29]

= - <z4_~g—z3+%z2)[(l—rz)Zanrzn:I (12)
n=
2 2 )0
(3 -3 +1 l:(l—r)z

m=0

=+
I

berm] (13)

Substituting equation (12) into continuity equation (7)

Q0
_ 3 15 5, 3 Z an_ 2n+l z n_ 2n+3
v = <Zz o Z+ZZ a1t - 12 (14)

@D
n=0 n=0

It is obvious that u and v satisfy the boundary conditions
u{0,r) =u(l, r) = u(z,1) =v(0,r) =0

To satisfy v(z,1) = 0, one relationship between all coefficients
is obtained, namely

w

—an -9
ZO (n+1) (n+2) (15)

n=

It is also obvious that t satisfies the thermal boundary condi-
tions as given in equations (11)

=0 2t
t(Z, )"‘ Yy

_

= =0
0 9z

zZ= Z:l

To satisfy the condition t(0,0) = 0, this gives
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Recurrence formulae:

From equations (12) through (14),

s 0]
Bu (41 35 6, 111 5 4,9 3 Z 2n|°
uaz—(4z-2z+4z—4z+zz (1-r%) apr
n=0
0 35 111 75 9 2
R 722 6 5 12 4,72 3 n__2n+l
Vor (42 2z+42 4z+2z)[ 1 T
n=
« [o4] ey
an  2ni43 2n-1 n+l
-Z iz T n ][Z nanr - (n+l)apr :|
n=0 n=0 n=0
[e0] (e8]
18 [ Bu)_ 423}_222 Zn—ZZ 2n
- e <r8r) —4( -Zz +ZZ n“anpr - (n+1)° anr ]
n=0 n=0

@
2 o2 2
a
f’—z —a—%——_- - ;"—2'(1222‘— 15z + 3) [(1-—r2) E anrzn:l
z
n=0

By substitutions of above four equations and equation (13) into
the momentum equation (8) the following equation is obtained:

o0

35 111 75 9 z

o (427-72‘”‘ y Z“T**E*){[‘““Zanrzn]
n:

n=0 n=0 n=0 n=0
2’ Z? N 2
= _<?——+1> (].—I‘z) bmrm
m=0
0]
} - _ 4(24- 2z3+ izz)[i nfanrén-2 Z (nt+1) anrzn:l
n=0 n=0
2 o]
- f—z— (122% - 152z + 3) (1-r’-)z anré? (17)

n=0
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Multiplying both sides by dz and integrating from 0 to 1 and re-
arranging, a recurrence formulae for ap's is obtained by equating
coefficients of like powers of r2™ as follows:

5 11 al?
an+1 :an'm[?(bn-bn-l)-l_z(an-an_l)jl (18)

Note that the Prandtl number dropped because the left hand side

of equation (17) vanishes.

Similarly, from equations (12) through (14),

[e0]
a_t_£7261_95§41_5_3§_2)zan2n+1
Var_2(3z'4z+82‘4z'4z+zz ntl *

n=0

a = 2 1 2m+1
n - m
—i 2 r2n+3jHiz mby, r“M 7 (m+1)byr —J
n=0 m=0 m=0
[20] w
ot 7 3
u 5;: -[z - EZS+ 4z° - Ezﬂl:z aann —Z anr2n+2:'
n=0 n=0
[ee] oo}
[Z b er _z brm 2m+2}
m=0 m=0
) ot 3 g2 2 >
12 (r —) = (Z— -+ 1) m2bp ré™M -2 (m+1)? berm
r Or or 3 2
m= =0
2 52 2 © <
a” 9%t a 2 2m+2
I “a?:F‘ZZ‘”[Z bear®™ - ) b J
m=0 m=0

By substitutions of the above four equations into the energy
equation (9) and multiplying both sides by dz and integrating from 0 to 1,
a recurrence formula for bm's is obtained by equating coefficients of

like powers of r2M as follows:
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n=0 n=0 m=0
©
—z (m+1) by, r2m+1
m=0
0 X @ ©
+0. 1405 Z aann.z aprénte Z bmrzm-z bmr2m+2
n=0 n=0 m=0 m=0
@ ©
\ B N
| m=0 m=0
or, © - . .
~1.0596 Z — anb r2m+2n_z Z I by 22042
n=0 m=0 n=0 m-=
o0 os] 1 @ ©
- z (1::1) apby, r2mt2nt2 | Z n:r; b p2mt2ntd
n=0 m=0 n=0 m=0
@ o8] [os) ©
+0. 1405 Z Z anbmrimtin _Z Z anbyrimtint2
n=0 m=0 n=0 m=0
o) o] [os) foo)
-Z Z apbpr2mtent2 +z Z a bmr2m+2n+4
n=0 m=0 n=0 m=0
@ ©
= 1_31' Z mzberm-Z_ Z (m+1)2b rZrn
m= m=0

All exponents of r's may be changed into er’ the above equation
becomes,
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[+ o] [29]
1. 0596 (m-n)
RS PR S,
e, &2, 11(m+l) n+1
m-1
-0, 1405]anbm_2 Z

n=0

m-n- l m-n
1. 05

m-2

-n-1
+Z [1.0596(%) —0.1405}anbm_n_2 r2m

n
n=0
Therefore,
m .
3 1.0596(m-n)
SRR, | ey
m+l = Pm ll(m+1)2{ [ n+1 - 1405 fanbm-n
n=0
m-lr'
m-n-1 m-n
- 1.0596 .
9 < oz T 1 )-I— 281 |apbm-n-1
n=0 -
m-2 -
m-n-1
+ . 1. 0596<7) -.1405:]anbm_n_z (19)
n=0 -

Determination of all Arbitrary Coefficients an's and by,'s:
From the recurrence formulae as given by equations (18) and (19), all
arbitrary coefficients, ap's bmpy's, may be expressed in terms of ag and

by. Where by is determined by the Rayleigh number Ry f‘, as given by

equation (16). Values of ap may be obtained from the equation (15) by
finding the root of the equation. All calculations of ap's, bm's, and
root finding can be achieved easily by the use of high-speed digital
computer. In this report all calculations are programmed in Algol
language and performed by Burrough's B5500 digital computer. A com-
puter program is attached in Appendix A.
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V. DISCUSSION OF RESULTS

Coefficients a,'s and bm's: All calculations were based on a
a
geometry ratio of 7 - 1 and 4. Values of by were chosen from 5

stepping 10 until 55. Values of a; corresponding to various by, as a
result of root finding by computer, are tabulated in Table 1. Three

a

roots or agy's for the case of 17 1 are obtained while only one root for
a

the case of — = 4 is obtained. Other roots may be obtained by further

finer increments of tried ay's, but this involves more computer time.

Table 1. Values of agy's

a/4 1 1 1 4
bo 5 15 25 55
ag 4.77 14. 84 25.16 23. 86

The first ten values of a,,'s and by,'s corresponding to various

values of by, are tabulated in Table 2. For the case of % = 1, actually
20 terms of a;\'s and b, ,'s are calculated. For the case of % = 4, only

ten terms are calculated.

From Table 2 it is obvious that for by ranging from 5 to 55, all
coefficients ap's and byy's tend to converge to a constant value; thus,
an's and by,'s higher than ag and by may be assumed to be ag and b,.

For by larger than 55, a larger number of summation terms has to be
considered to converge to a constant coefficient. This involves a longer
computer time.

In the root finding process of a; in order to satisfy the equation
(15) values of ao's starting from O step 1 until 200 are tried. When the
total summation is close to the allowable value which is 0.01, the in-
crement 1 is further subdivided into 64 equal divisions until finally
the summation is < .01.
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Table 2. First Ten Values of an's and bm's

a/1 1 1 1 4

b 5 15 25 55

ag 4.76 14. 84 25.16 23. 86
a, - 2.57 - 6.25 - 9.31 14. 87
a, - 6.34 -21.55 -42.06 -38.49
as - 7.18 -23.86 -41.35 -65.27
ay - 7.12 -22.89 -37.91 -75.59
as - 7.07 -22.34 -36.01 -74.13
ag - 7.05 -22.12 -35.49 -71.75
aq - 7.04 -22.03 -35.22 -70.31
ag - 7.04 -22.00 -35.08 -69. 50
aq - 7.04 -22.00 -35.00 -69. 14

Dimensionless Velocity and Temperature: Once all coefficients
an's and b,,'s are determined for by ranging from 5 to 55, the dimen-
sionless velocity and temperature for the case that the coefficients ap's
converge before ag may be written as follows:

9 ©
5 3 2
u=-(z*- > 2> +E z%) | (1-1%) Zanr Ty ag Z an (20)
n=0 n=10

But the last term of equation (20) is a series of geometric
progression, namely,

@

(1-r°")
ZE: an = r2°[1 + r2 + r4 + ... + ] = r20 —
1-r2
n=10
2n
forr <1, asn—> o, r =0
s 5 £20
or Zrn: 5 (21)
l-r
n=10
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Equation (20) becomes

9
5 3
- 4 2 3,2 2 2 2n 20
u--(z—2z+2z> (l-r)Zanr +agr (22)
n=0
Similarly,
9
z3 Z2 2 Zm 20
t =+ —3‘-—2"+l (l-r)mer + bgr (23)
m=0

where values of a 's and b,'s are given in Table 2. For the case of

slow converging coefficients a,'s and b, \'s, more terms are to be con-
sidered.

Sample velocity and temperature profiles are plotted by a
calcomp digital plotter and are shown in Figures 1 through 12 of
Appendix B. The plotter uses a magnetic tape which is prepared by
a computer program that is included in the computer program of all
calculations as shown in Appendix A. Figures 1 through 9 of Appendix
B are for —j— =1, and by = 5, 15, and 25, or B(0) = 5, 15, and 25,
respectively, while Figures 10 through 12 are for % = 4 and by = 55.

Actual values of the dimensionless velocities u/ag or U/A(0), v/a, or
V/A(0), and the dimensionless temperature t/by or T/B(0) should be
multiplied by the scale factor as shown in each figure.

It is interesting to see that for higher Rayleigh numbers or
higher by, the slope of the temperature close to the side wall is less
steep than that for lower Rayleigh numbers as evidenced by the com-
parison of Figures 3, 6, 9 and 12 of Appendix B. The patterns of

velocities for same % does not show any fluctuations for by = 5, 15
and 25. However, for% = 4 the velocity patterns for by = 55 have

' a
larger fluctuation than those of lower Rayleigh numbers for i l as

shown by Figures 1, 2, 4, 5, 7, 8, 10 and 11 of Appendix B.
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VI. CONCLUSION

More exact power series solutions are obtained for evaluating
the velocity and temperature distributions for natural convection flow
in an end-closed cylindrical vessel partially filled with liquid. Once
a computer program is written, laborious calculations may be per-
formed by a high-speed digital computer. The power series solutions
can be applied to problems with various different boundary conditions.

The Rayleigh number seems to be the only important parameter

in this study, as it should be in most natural convection study. The
geometry factor definitely enters into the picture.
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APPENDIX A




BEGIN
FILE IN CARD(2,10)}
FILE ouY LINE 4(2515)3
EORMAT 1IN FML (L42F12,62F12,6)2
FMIt (3CF12,4,X48))3
.FORMAT FMI(11A6)3
FORMAT OUT FMO (X30s"CONVECTION FLOWS IN CLOUSED=END CYLINDERS®/
X402 "C W CHIANG™/ /),

FMO3 (10(X4," ACLI"»XA))>»
FMO04 (10(CF12.4 3/

FMOS (10(X3,7SBLI1"»X4)),
FM06 (10(F12.4 3/

FMO7 (10(X3,"™SAALT1I"»X3)),
EMDB _(10(F12.4 __ )/)2

FMO11 €(10(X3," BII)",X3)),
FM012 (10CF12,4)/7)3

PROCEDURE DATELINE (PROGRAM)}
VALUE PROGRAM}
ALPHA PROGRAM}
BEGIN UWN BOOLEAN USED)
FORMAT HD(CAAs13s"s "sA4,X2,"TIMES",I55X10,"0UTPUT FROM PROGRAM ",
A6, X10"UNIVERSITY UF _DENVER COMPUTING CENTER"™ ///):
LAYT (/ / TEXECUTION TIME =", J5, X03» "I/0 TIME =%, I5>
" SECONDS "sA4,13,", "» A4» X003, "TIMEI"™, 17 /7 /7 /)3

LABEL GOTITS
ALPHA MO, MINS, FEHBs HRS» YR, DAY}
USED ¢ USED _AND PRUGRAM , [18 & 61 = 0}
DAY ¢« TIME (0)3
YR ¢ DAY , [18 &t 12]) + "1900";
DAY € DAY . [42 % 61 + 10 x DAY , (36 ¢ 6] + 100 X DAY , [30 & &)}
FEB ¢ IF YR , (42 % 6] MOD 4 = O THEN "(FER," ELSE "R_FEB,.,"}
FOR MO ¢ "e¢JAN,", FEBs "eMAR,", "<APR,"™, "¢ MAY", "CJUNE"™, "&JULY™
s "eAUGL", "<SEPT"™» "eDCT,"» "<NOVe"s» "eDEC,"™ 0O
BEGIN IF DAY < MO « [18 3 06] THEN GO Y0 GOTITS
DAY ¢ DAY = MO o+ (18 1 613
END}
GOTITts MINS « TIME (1) / 36003
HRS ¢ 100 x (MINS DIV 60) + MINS MOD 603
IF USED THEN WRITE (LINE, LAYT, TIME (2) / 60s TIME (3) / 605 MO,
DAYs YR, HRS) ELSE WRITE (LINE» HD»MO»DAY,YR,HRS,PROGRAM)}
USED ¢ TRUE}
END QOF DATELINE}

PROCEDURE DRAWGRAPHCC,N3,N4»NsNAME,B)3 ARRAY Cl#,%,%]}
ALPHA ARRAY _NAME[#,%]3 INTEGFR N»N3»Na»B}
BEGIN
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INTEGER IsJsPXsPYsN23

REAL MAX1 o MAX2»MINIPX1,PX2sPY1sPY2sPY3,PYlt»S1552,P3
ARRAY XsYI(02901}

ALPHA ARRAY Ni(O$1013 ALPHA At»A23

LABEL L1,L23

MAXt ¢ Cl1512113
MAX2 ¢ MIN ¢ CC121,213
FOR I ¢« 1 STEP 1 UNTIL N3 DO
FOR J ¢ _1 STEP 1 UNTIL N4 DO
BEGIN
IF CII»Jsr1]l > MAX1 THEN MAX1 ¢ CLIsJstl}
IF CLIsJs2) > MAX2 THEN MAX? ¢ Cr1,0»213
IF CLI»Js2] < MIN THEN MIN ¢ C{1,J52)3
END3
IE MIN < O THEN GO TO {13
FILL X[#*] WITH 050,150502041505,050,1»02050,150,050,1,0,
00001205050,1905050,1205020,1505050,1502050.7550,75>»
..Q.;.ZiLl;SLhSJ—lJSIZ.2512;25)2.25‘ 3!30 3!3.’513075‘3075)
80598e5984595¢25954252502596965606.75964¢75964,7557,5»
7455

FILL YO*) WITH 5:55545554528,9558,9528.9528,858,4854,8>
36855308553e85534353,3530352,75524¢7522.75226222422242»
1:6521.652146501415141210150.555045520.55»05020,15050>
0¢1950505041505050,15050500150505041505050.1505050,1505»
050¢12020,0,13

PLOT(2,25=3)}

LYNE(X»Y»59,1)3

PX ¢ 93 PX1 ¢ 13 PX2 ¢ 0,753

PY € =23 PY{ ¢ 0} PY2 ¢« 0,553 PY3 ¢ 03 PY4 ¢ 5,63
N2 ¢ 53

S1 €. 7.5 7 MAXt}

$2 ¢ 5,5 / MAX2}

GO TO L2}

L1 FILL X[*) WITH 050,15,050,0215020,041,020,0.1»,0,050,150,0,
0¢12020504190+050,1502050615050,0.1505050,1»05050,120>
020e61205,0,0415050504612020204150505046150,05041,0,050,1>
02020e5520e5520,5521412103014121.650146551,65224222.2>
20292e755247592,75534353¢353,353,8553.85,3,85,4,8,8,8,
ao4!0095040950409505'5)505}

FILL YI*] WITH 3¢8,3¢853¢8,3,82,3,825344253.,08,3,04,3,04,
2:6622,6692,6602,2802.2852,2851,921.921,951.5251,52>»
1L52)_1 l_l,a!,lgingA,l,“J007@10.76)0.]6[0035!003820|381
*0,38s°0,38,=0,385=0,762=0,76»=0,76»"1,14s"1,18,5>1,14>»
®1:529%1,525"1:525=1,99"1:95,%1,9,~2,28,=2,28,=2,28,
“2:662%2,662°2,66523,08,=3,08,=3,045"3,42,=3,42,=3,42»
*3,8,°3,85°3,75=3,8,=3485°3,75*3,8,=3,8,=3,7,~3,8,-3,8,
23,75"3.8,"3,8s"3,75"3,8,"3,8,°3,75=3,8,=3,8,"3,75~3,8>»
'3150‘3.71'3;5193.6)'3.1»33.8:-3.8n'3l71

PLOT(2s55=3)3

LYNEC(X»Y»86,1)}
X[1] € YI1) € Y[2) ¢« 03 X[2] ¢ 5,5}

DENVER RESEARCH INSTITUTE — UNIVERSITY OF DENVER
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DASHLINE(X»Y»251)3

PX € 73 PX1 ¢ 03 PX2 ¢ 0,55}

PY ¢ _ =5} PY1 ¢ =2,83 PY2 ¢ 0,763 PY3 ¢ =3,8} PY4 ¢ 3,93

N2 ¢ 63

S1 ¢ 3,8 /7 MAX23 S22 ¢ =3,8 /MINS

IF S1 < 82 THEN S$2 ¢ S1}

ST e 5,5 / MAX13

L2 FOR 1 ¢ 0 STEP 1 UNTIL 7 DO N1[I] ¢ NAMEIN,1]}

SYMBOL(=0,362PY1,0,145sN12,90246)3

FOR I ¢ 0 STEP 1 UNTIL 10 DO BEGIN
N1[O] ¢ NAMELIN2,113 P ¢« PY2 x I ¢ PY3)
SYMBOL(=0,1sP»0,15N1,90s6)3 END}

FOR I ¢ O STEP 1 UNTIL 7 DO NI[I] ¢ NAME(4,1)3

SYMBOL(PX1,PY3=0,5,0.14»N1,0,486)3

FOR I .« 0 STEP 1 UNTIL 10 DO BEGIN
N1{O) ¢ NAMELT»113 P ¢ PX2 x I3
SYMBOL(P»PY3=0,2,0,15N1+0»6)3 END}

FILL N1[*) WITH " SCA","LE FAC"s»"TOR ="}

CONVERT(S2,2,A15A2)3

N1[3) € A13 N1L[4) « A2}
SYMBOL(O»PY440,2,0,145N150527)3
CONVERT(B»0,A1,A2);

FILL NLL*} WITH " B"s"[0) VA","LUE ="}

N1[3]1 ¢ A13  N1[4] € A2}

SYMBOL(0.62PY420.142N1,0527)3

FOR I ¢ 1 STEP 1 UNTIL N3 DO
BEGIN

N1LO1 ¢ NAME[(8,I=113

FOR J ¢ 1 STEP 1 UNTIL N4 DO
BEGIN

XLJ) ¢ CLTIsJr1] x S13

Y[J] ¢ ClIrJr2] x §23

END3
NAMELINEC(X»YsNas»1»N1»6,FALSE)}
END3
PLOT(PXsPY»=3)3
END. OF DRAWGRAPH}
PRNCEDURE UVALUECA»Bs»NAME)} ARRAY A»BI%]3 ALPHA ARRAY NAMEC#,+)3
BEGIN
REAL 2,2FACTURSR»SUM»BVALUES
INTEGER 1sJdsKsN3
ARRAY Cr035,0826,08213

AVALUE ¢ B{0)3
Z € 03 N ¢ 93
FOR I ¢ 1 STEP 1 UNTIL 5 DO
BEGIN
Z ¢ 7 + 0,23 R ¢ =0,13
ZFACTOR ¢ =1 X (Z+4 =5/2%Z*3 + 3/2x2+%2)}
FOR J ¢ 1 STEP 1 UNTIL 26 DO
BEGIN
R ¢ IF R < 0,5 THEN R ¢+ 041 ELSE R + 000253 SUM ¢ 03
FOR K ¢ 0 STEP { UNTIL N DO
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SUM ¢ SUM + (ALK] x (R#(2XK) = Rx(2xK+2))/AL01))}
ClIsdst] ¢ R
CLI»Js2) ¢ ZFACTUR X (SUM + (AIN] x R*#(2xN42)x(1=R%2))/
AlO])3
END;
END3
N € 13 1 € 53 J € 263 DRAWGRAPH(CC»1»JsNsNAME,BVALUE)S
END 0OF UVALULS

VVALUE(CA,BsNAME)} ARRAY A,B(*)3 ALPHA ARRAY NAME[#,*]}
BEGIN

REAL 2sZFACTURSR» SUM1»SUM2,BVALULS
INTEGER I5JsKs N3
ARRAY CIOt5,0811,012]8
BVALUE ¢ BL{01}
Z ¢ 03 N ¢ 93
FOR I ¢ 1 STEP 1 UNTIL 5 DO
BEGIN
Z ¢ 7 ¢+ 0,23 R ¢ =0,13
ZFACTDR ¢ (2xZ#%3 = 15/4%xZ%2 + 3/2x7)}
FOR J ¢ 1 STEP 1 UNTIL 11 DU
BEGIN
CilsJrt) ¢ R ¢ R40,13 SUM1 ¢ SUM2 ¢ 03
FOR X ¢ 0 STEP 1 UNTIL N DO
BEGIN
SUME ¢ SUML + (ALK]) / (K+1) x Rwa(2xK+1))/A[01]13
SUM2 ¢ SUM2 + (A[K] / (K+2) x R*(2xK+3))/A[{0)}
END3
ClIsrJe2] ¢ ZFACTUR x (SUM1=SUM2+4(AINI/(N+1)IXR*(2xN+3)X
(1=R*2))/A001)}
END3
END3
N ¢ 23 [ € 5 ) € 113 DRAWGRAPH(C,»1,JsNsNAME,BVALUE)S
END OF VVALUES
PROCEDWRE TVALUECASNAME); ARRAY A[w%]3 ALPHA ARRAY NAMEL#,*];
BEGIN
REAL ZeZFACTUR,RsSUM»BVALUE}
INTEGER I»JroKaN3
ARRAY CLot5,02:26,08213

BVALUE ¢ A[0]3
Z ¢ 05 N ¢ 93
FOR I ¢ 1 STEP 1 UNTIL 5 DO
BEGIN
Z ©Z + 0,2} R ¢ =0.13
ZFACTIR ¢ (Z%3/3 = Z%2/2 + 1)}
FOR J ¢ 1 STEP 1 UNTIL 26 DO
3EGIN
R @ IF R € 0.5 THEN R + 041 ELSE R + 040253 SUM ¢ 035
FOR K ¢ 0 STEP 1 UNTIL N DO
SUM ¢ SUM + (A[K) X (R®(2XK) = Rx(2xK+2))/A[01)}3
CLI»rdrt) ¢ R
CLIsJr2) ¢ ZFACTUR X (SUM + (AIN] x R*(2xN+42)X(1=R%2)/
Al01));
END3
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END3
N ¢ 33 1 € 53 J ¢ 263 DRAWGRAPH(C,»12JsNsNAME,BVALUE)S
END OF TVALUE}

INTEGER I1»JsMs IMAXs DN}

REAL Al.81, AIMAX ) BIMAXPDELTAI oDEL1sTEMP,MAXAI,DELTBI>»
DEL2,»K1»RTI»RTHL3

BONLEAN BOOL1,800L23

ALPHA ARRAY NAMEL[0$68,081013
DATELINEC"CAONVEC™)?

- FOR I € 1 STEP 1 UNTIL 8 DO
READCCARDFMT»FOR J ¢ 0 STEP 1 UNTIL 10 DO NAME(I.Jd})}
READ (CARDSFMI»IMAX,RTT )}

BEGIN
ARRAY ALOIIMAX+1],BL08IHMAX+1)2B8B3(03IMAX+1],SAALOSIMAX+1],
SBIOSIMAX+1)s AALOIIMAX+11s81C08IMAX+1),B2[08IMAX+1];
WRITE (LINE,FMO)3
READ (CARDsFMI1»BI,DEL2 »BIMAX)}
READ (CARD,FMI1,Al, DEL1sMAXAL);
DELTBI«DEL2IFOR B[0)eBI STEP DELTRI UNTIL BIMAX DO
BEGIN
BOOL1¢BUOL2¢FAISE} DELTAI«DELI3AIMAXEMAXATS
FNR A[OJeAl STEP DELTAT UNTIL AIMAX DO
BEGIN
RT €RTIFK1€(RT )#23SBLO)¢BIO)IAALOJ¢A[O0)/23SAALINTeAALN]S
AC1Ye ALO01=3,0556 xBLO)+ 1.6667xK1xA[0])}
AL2)e€AL11=0,7639%x(B[11"8001)+0,4167xK1x(AL1]1=A[0])}
AC31¢A[2])=0,3395Xx(R[2])=BL11)+0,1852x(A[21=A(11]1)}
AA[11¢A01]/63AA02]1¢A02)/123AA131¢A03)/7203
SAALL1)eSAALO1+AAL1)3SAAL2)€SAATTII+AAL2)3SAALIeSAAL2]
+AA[3138[11eB[0)+0,0383%A[0IxB[0])}

. Bl21eBl11=0,0627%xA[01IxB[1140,0914xA[01XB[01}
B[3)eB[2)=0,05996xA(0IxB[{2]1=0,0118xA[1)xB(11+0,08879x
AC{0IxBL11+40,02430xAC11x8{0)=0,0118xA[0)xR(N]}
SBU11¢3001+BL1135802)¢SBU11+BL2]13SBL31¢SB{21+B[31}
FOR I3 STEP 1 UNTIL IMAX+1 DO

BEGIN
Del#23MeI=13NeI=23L¢]"3}
ALIJeALI=13=(3,0556x(B[I=1]=B[I1=21)~1,6667xKix(A[I=1)
=ALI=21))/0D;
FOR JeO STEP { UNTIL M DO
BIL1I)e(1,0596X(I=d=13/¢J+1)=0,1405)xA[JIxB[I=J=11}
FOR JeO STEP {1 UNTIL N DO
B2[I11¢(1,0596x((I=J=2)/CJ+2)+(I=J=1)/(J+1))+0,281)
xA[JIxBLTI=J=2]}
FOR Jeo STEP 1 UNTIL L DO
B3[T)e(1.0596x(1=J=2)/(J+2)"0,1405)%A{JIxBLI=J=3]}
BI1JeB{I=11=3x(B1L011=R2[11+B30(11)/¢11xD)}
AALTY€ALT)/7CCT+1)x(1+2)))
SBLT)¢SHBLT~1)+ BITI15SAACTI€SAALT=11+ AALL1]}
ENDS
IF A{01=Al THEN TEMP¢SAA[IMAX+11}
IF SIGNCTEMP)I#SIGNC(SAALIMAX+1]) ANp NOT RONL1 THEN
REGIN
B80NL1€300L25 BOOL2«TRUES
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GD TO SOLVER
ALGOL WRITE
ALGOL READ
ALGOL SELECT

END

ACOJeALO)=DELTAILS
ATMAX€ALO0I+DELTALS
DELTAI€DELTAI%X) 1253

ELSE TEMPeSAA[IMAX+11]3

BEGIN

END;
END3
END3
END}

IF ABSC(SAALIMAX+11)S 0,0100 THEN

UVALUE(CA»Bs NAME)}

VVALUECA2By»NAME )

TVALUECBsNAME) S

WRITE CLINE,FMNO3)3

WRITE C(LINE,FMO4,FDR 1€0 STEP 1 UNTIL (IMAX+1) DO
L ACL1))S

WRITE (LINESFMN5)3

WRITE CLINEsFMOS,FOR 10 STEP 1 UNTIL (IMAX+1) DO
(S8(I11))}

WRITE C(LINE,FMO7)3

WRITE (LINE,FMD8,FOR I¢0 STEP 1 UNTIL (IMAX+1) DO

[SAALT11)S

WRITE (LINE,FMD11)3

WRITE (LINE,FMA12,FOR I€0 SYEP 1 UNTIL (IMAX+1) DO

(8r11))

AIMAXEeMAXATZDELTATI«DELYS

DATELINELCO)}

END OF PROGRAM.

ARCTAN IS SEGMENT NUMBER 0050,PRT ADDRESS IS 0170

CUS IS SEGMENT NUMBER 0051,PRT ALDRESS IS 0146

EXP IS SEGMENT NUMRER 0052,PRT AUDRESS 1S 0154

LN IS SEGMENT NUMBER 0053»PRT ADDRESS IS 0153

SIN IS SEGMENT NUMBER 0054,FPRT ADDRESS IS 0147

SQRY IS SEGMENT NUMBER 0055,PRT ADDRESS 1S 0167
DUTPUT(W) IS SEGMENT NUMBER 0056sPRT ADDRESS IS 0113
BLOCK CONTRODL IS SEGMENT NUMBER 0057,PRT ADDRESS IS 0005
INPUT(W) IS SEGMENT NUMBRER 0058sPRT ADDRESS IS 0137

X TO THE I IS SEGMENT NUMBER 0059»PRT ANDRESS IS 0155

IS SEGMENT NUMBER 0060,PRT ADDRESS IS 0115
IS SEGMENT NUMBER 0061,PRT ADDRESS IS 0014
1S SEGMENT NUMBER 0062,PRT ADDRESS IS 0015
1S SEGMENT NUMBER 0063,PRT ADDRESS IS 0016
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